

8

Design, Analytical Validation and Diagnostic Yield of a Novel Canine Cancer Gene Sequencing Panel

INTRODUCTION

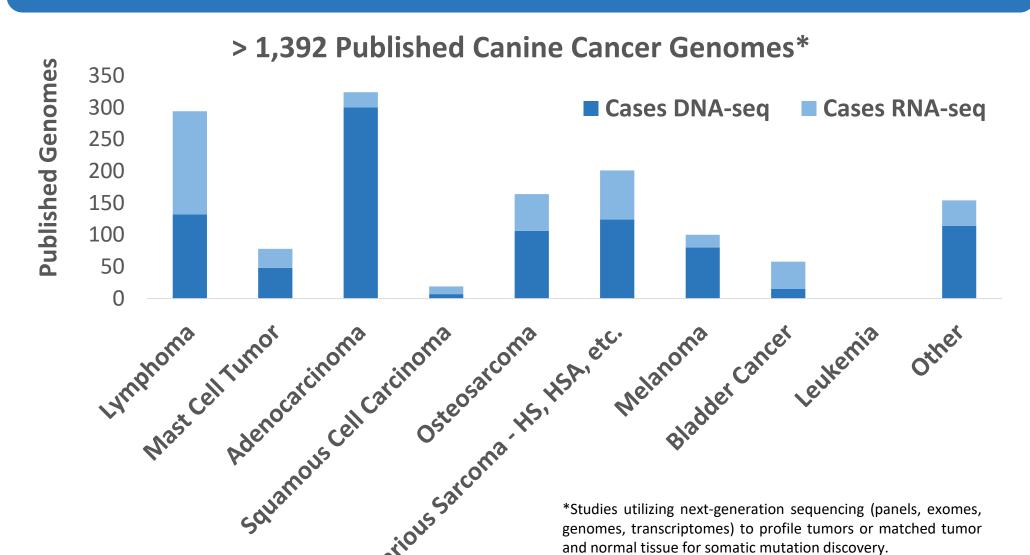
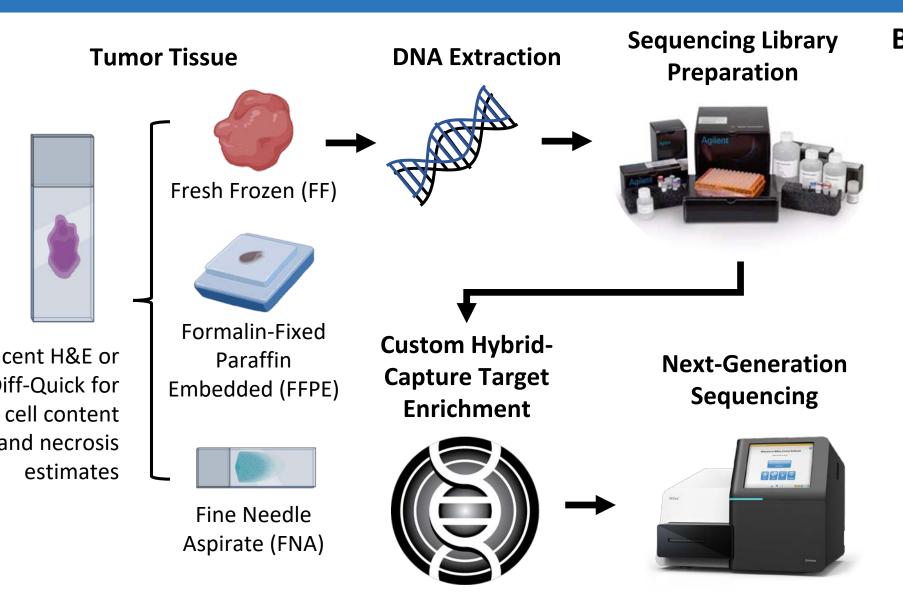



Figure 1. Knowledge of Canine Cancer Genome Landscapes is Rapidly Accelerating. Canine cancer genome sequencing studies are unearthing new candidate diagnostic, prognostic, and predictive biomarkers. Development and rigorous validation of genomic diagnostics is thus increasingly important for enabling new biomarkers to be confidently leveraged in research and the clinic.

Diff-Quick fo

Figure 2. SearchLight DNA[™] Workflow and Content. SearchLight DNA[™] is a tumor-only, next-generation sequencing (NGS), hybridcapture, canine gene panel covering 482,000 base pairs of 120 genes associated with canine or human cancer. (A) SearchLight DNATM wet laboratory workflow for sequencing tumor tissue (FF, FFPE, FNA). (B) Genes and mutation types evaluated by SearchLight DNATM.

Analytical Sensitivity	Median Sensitivity all SNVs (Range)	Median Sensitivity at Target AFs 7.5% - 10.5% (Range)	Sensitivity for KIT ITD (Positive Replicates)	
C2:Normal Dilution	90.28% (83.33% - 97.22%)	95.24% (95.24% - 100%)	100% (12/12 Replicates)	

Table 1. SearchLight DNA[™] Analytical Sensitivity. Sensitivity for detection of unique Single Nucleotide Variants (SNVs) and an Internal Tandem Duplication (ITD) in the C2 cell line when diluted to a target heterozygous allele frequency (AF) of 7.5%. 36 unique C2 "truth" SNVs were determined by sequencing 10 undiluted replicates of C2 and selecting passing SNVs at AF \geq 0.03 that occurred in all replicates. Sensitivity was calculated based on the frequency at which these variants were detected at AF \geq 0.03 in 12 replicates of diluted C2.

Analytical Specificity	Median Specificity SNVs (Range)	Specificity for KIT and FLT3 ITDs (Negative Replicates)
Normal Tissues	99.9995% (99.9981 - 100)	100% (KIT: 10/10 Replicates) (FLT3: 10/10 Replicates)

Table 2. SearchLight DNA[™] Analytical Specificity. Specificity was determined by sequencing a panel of 10 constitutional normal DNAs from peripheral blood mononuclear cells (PBMCs). These genomes were expected not to contain SNVs with low AFs. AFs between 0.03 and 0.20 were thus considered noise. Specificity is calculated as the frequency of these SNVs among all sequenced nucleotides that pass analysis filters.

Cross- Contamination	Containinating Sivis and		Contaminating SNVs and Indels from Cell Line 1
Cell Line 1 Rep 1	0	Cell Line 2 Rep 1	0
Cell Line 1 Rep 2	0	Cell Line 2 Rep 2	0
Cell Line 1 Rep 3	0	Cell Line 2 Rep 3	0

Table 3. SearchLight DNA[™] Cross-Contamination. To evaluate crosscontamination rates when preparing samples in parallel in our clinical laboratory, we prepared 6 libraries in an adjacent checkerboard pattern from 2 distinct cell lines. Contamination was considered the presence of any SNV unique to one cell line that was detected in a passing call with $AF \ge 0.03$ in the opposite cell line.

Table 4. SearchLight DNA[™] Reproducibility. In order to determine reproducibility, we prepared 12 replicate libraries of a canine pulmonary adenocarcinoma cell line which were sequenced across 4 sequencing runs varying the instrument and operator. Concordance was calculated for SNVs detected in a passing call with AF \geq 0.03 across replicates.

FFPE

Table 5. SearchLight DNA[™] Interfering Substances: FFPE. To determine the impact of FFPE preservation on sequencing results, we analyzed a fresh biopsy that was sub-divided into a formalin-fixed, paraffin-embedded section (FFPE) and a separate section grown in culture (cell line). Concordance was calculated for SNVs detected in a passing call with AF \geq 0.03 across replicates.

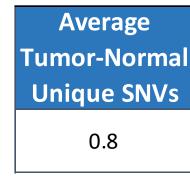
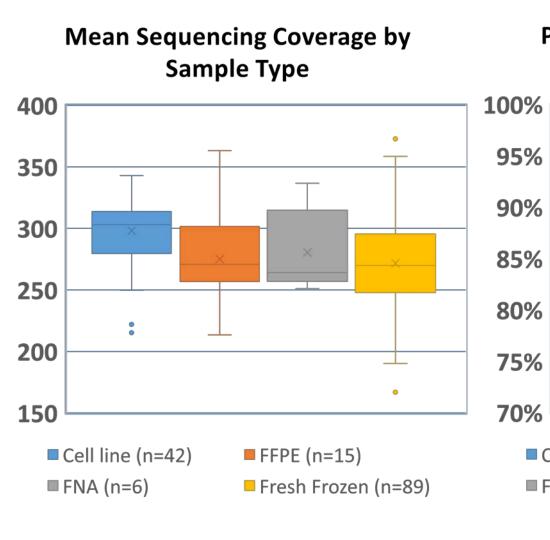
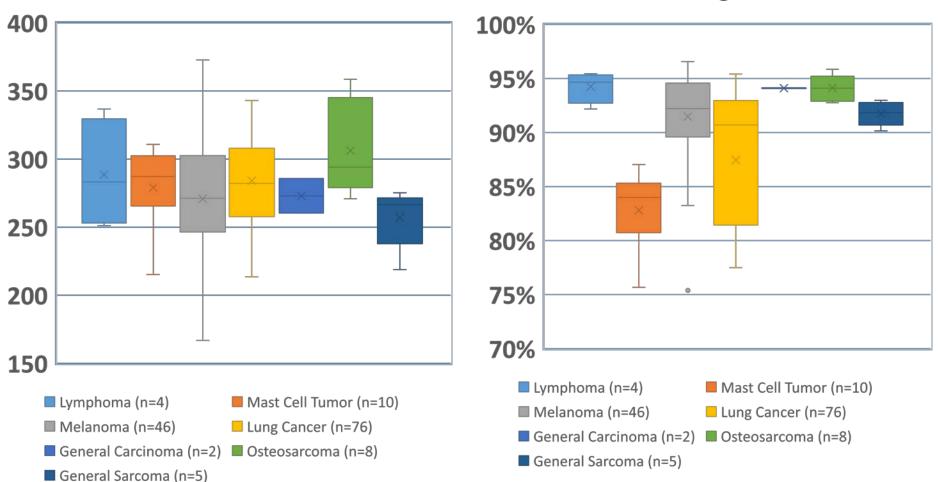


Table 6. SearchLight DNA[™] Tumor-Normal and Tumor-Only Concordance. We compared matched tumor-normal sequencing to tumor-only analysis for 10 tumors with matched normal DNA. Concordance was calculated for SNVs detected in a passing call with AF \geq 0.03 across replicates.

Shukmei Wong¹, Manisha Warrier¹, Sara Byron¹, Victoria Zismann¹, Martin Boateng¹, Salvatore Facista¹, Timothy Whitsett¹, Colt Tallant¹, Natalia Briones¹, Tyler Izatt¹, Kathryn Banovich¹, David Haworth¹, Han-Yu Chuang¹, William PD Hendricks¹

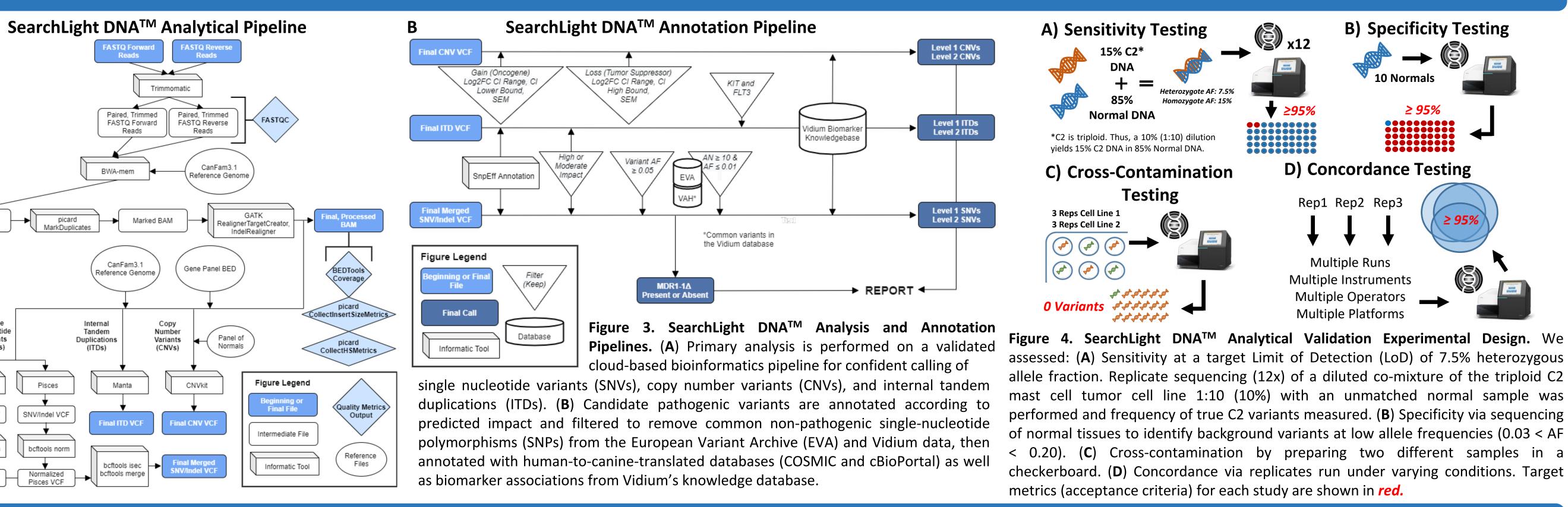

¹The Translational Genomics Research Institute (TGen) and Vidium Animal Health, a Subsidiary of TGen

APC	ARID1A	ASXL1	ATM	ATR	BAP1	
BRCA1	BRCA2	CDK12	CDKN2A	CDKN2B	CHEK2 (TTC28)	
EGFR	ERRFI1	FBXW7	FLCN	MEN1	MLH1	
MSH2	MSH3	MSH6	NF1	NF2	NOTCH1	
PALB2	PMS2	POLD1	POLE	PTEN	RB1	
RUNX1	SDHB	SETD2	SMAD4	SMARCA	\$ SMARCB1	
STK11	TP53	TRAF3	TSC1	TSC2	VHL	
electeo /lutatio		or Hotsp	oot Muta	ations (6	i1 Genes) -	
AKT1	AKT3	ALK	ARAF	BRAF	ВТК	
CALR	CBL	CCND1	CSF3R	CTNNB1	DDR2	
DNMT3A	ERBB2	ESR1	EZH2	FANCC	FGFR1	
FGFR2	FGFR3	FLCN	FLT3	FOXL2	GNAQ	
GNAS	GNB1	H3F3A	HRAS	IDH1	IDH2	
IKZF1	JAK1	JAK2	KDR	KIT	KRAS	BAN
MAP2K1	MAP2K2	MAPK1	MET	MTOR	MYC	
MYD88	NFE2L2	NPM1	NRAS	NT5C2	PDGFRA	
PIK3CA	PIK3R1	PTCH1	PTPN11	RAC1	RAF1	
RET	RICTOR	SDHD	SF3B1	SMO	STAT3	
U2AF1						
elected	Region	s - Copy	Numbe	r Events	(51 Genes)	
ATRX	BRAF	CCND1	CCND2	CCND3	CCNE1	
CDK4	CDK6	CDKN2A	CDKN2B	CRKL	EGFR	N
ERBB2	ERFFI1	FANCA	FANCC	FANCG	FANCL	1
FGF3	FGFR1	FGFR2	IKZF1	KDR	KIT	_
KMT2D	KRAS	MAPK1	MDM2	MDM4	MET	. ▼
MYC	MYCN	NF1	NF2	NOTCH1	NRAS	Mute
PALB2	PDGFRA	PIK3CA	PTCH1	PTEN	RAF1	
REL	RICTOR	SMAD4	SMARCA	4 SMARCB1	L SMO	SNV/Inde
STK11	TP53	VEGFA				
Regions Genes)	Bearing	; Interna	l Tande	m Dupli	cations (2	bcftools
FLT3	KIT					<u> </u>


Reproducibility	Shared Mutations (Percent Concordance) (95% Confidence Interval)
Run 1 v Run 2 Inter-Instrument Variability Sequencer 1 v Sequencer 2 Operator 1	428 (99.07%) (98.63% - 99.52%)
Run 1 v Run 3 Inter-Run Variability Instrument 1 Operator 1	425 (98.73%) (97.60% - 99.85%)
Run 1 v Run 4 Inter-Operator Variability Instrument 1 Operator 1 v Operator 2	427 (98.50%) (98.28% - 98.72%)

•	Total # SNVs and Indels	# Common Variants	Concordance
	475	422	88.84%
	428	422	98.60%

Average Tumor-Only Unique SNVs	Average Shared SNVs	Average Total SNVs	Concordance (95% CI)
0.4	5.2	6.4	77.2% (61.53% -
			92.86%)



Mean Sequencing Coverage by Tumor Type

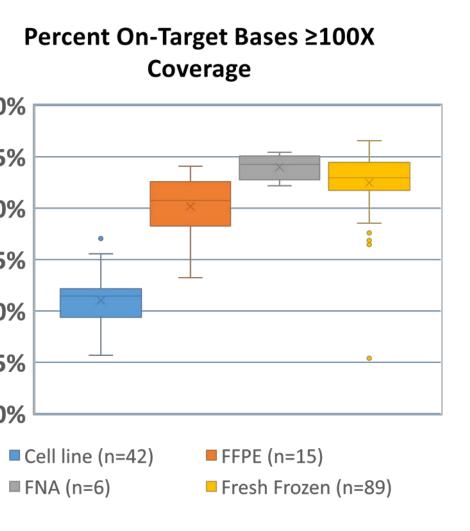
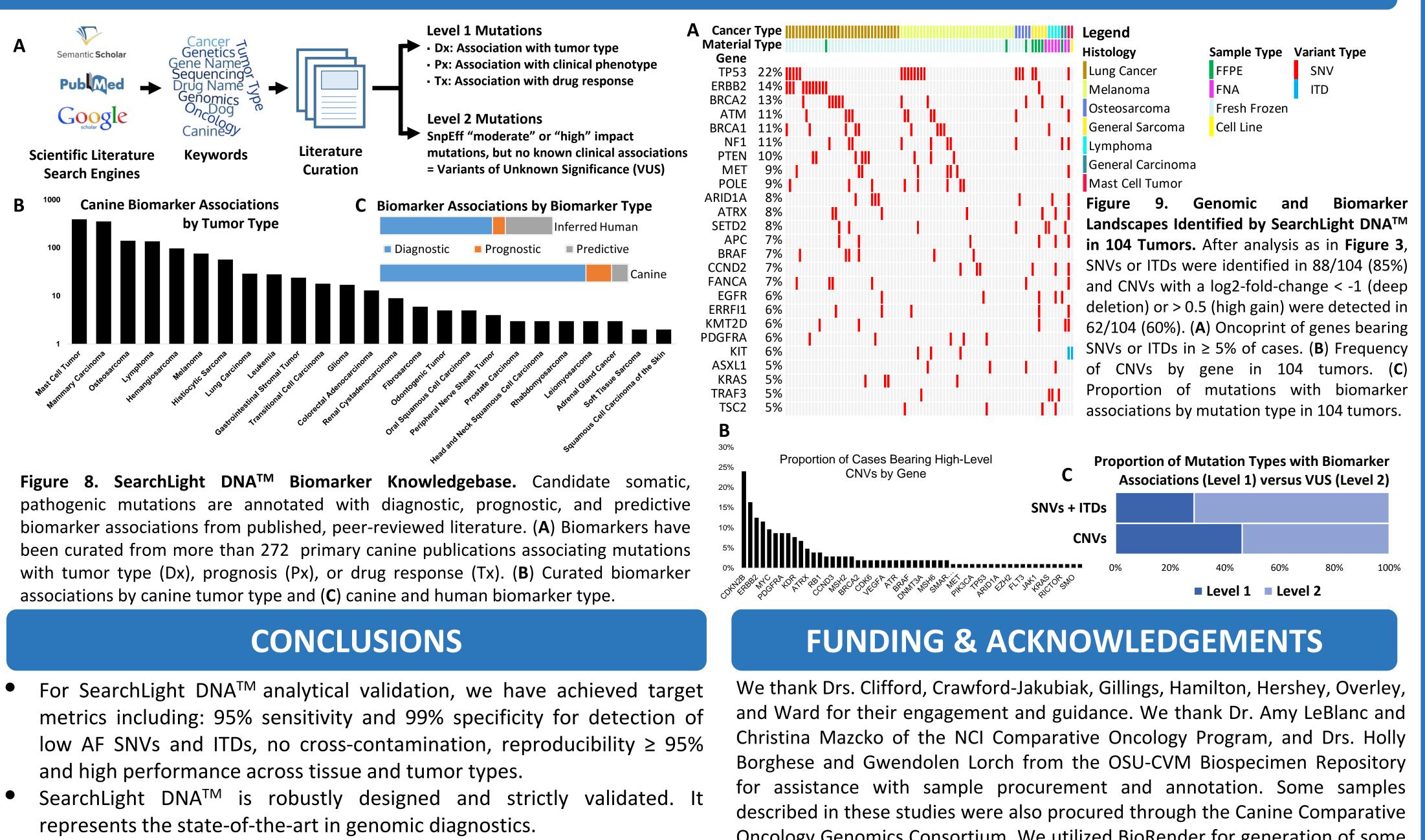


Figure 7. SearchLight DNA[™] Performance by Tumor and Tissue Type. We have performed SearchLight DNA[™] sequencing of >152 samples in our clinical laboratory on multiple tumor and tissue types. (A) Mean sequencing target coverage and percent of on-target sequenced reads with coverage \geq 100x across tissue types. (B) Mean sequencing coverage \bullet and percent of on-target sequenced reads with coverage ≥100x across tumor types.


METHODS

RESULTS

Percent On-Target Bases ≥100X overage

- Clinical applicability is the aggregate effect of many factors, but understanding the genomic identity of a tumor in a dog can be a valuable part of understanding the biology of that tumor.

Oncology Genomics Consortium. We utilized BioRender for generation of some images. Financial disclosures: These studies were funded by Vidium Animal

Health (VAH), a TGen subsidiary. WPDH, KB, and DH are VAH executive team members and TGen employees.